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Abstract
Magnetic resonance imaging (MRI) is increasingly being used for external beam radiation therapy in the treatment 
of prostate cancer because of its excellent soft tissue contrast and ability to provide functional and physiologic 
information about tumor behavior. At the same time, deep learning has seen widespread applications in medical 
imaging, including for MRI-based classification and synthesis. Deep learning–based approaches are being incor-
porated into the MRI-guided clinical external beam radiation therapy workflow for patient simulation, contouring 
of targets and critical structures, treatment planning, and treatment delivery. In this review, we examine the current 
status of deep learning for MRI-guided prostate external beam radiation therapy.

PProstate cancer (PCa) is the most common cancer diagnosis and second-leading cause of cancer death 

in men in the United States1; it is most often treated curatively using radiation therapy (RT) or surgery. 

External beam RT is a noninvasive treatment option that provides high success rates for tumor control.2

Over the past decade, magnetic resonance imaging (MRI) has played an increasingly important role in the RT 

workflow.3 Anatomic and functional structures can be visualized using multiparametric MRI (mpMRI), which 

typically consists of T2-weighted images, diffusion-weighted images, apparent diffusion coefficient maps, and 
dynamic contrast-enhanced imaging. Although computed tomography (CT) has historically been the main-

stay imaging modality in RT, the superior soft tissue contrast of MRI aids in the delineation of prostate tumors 

and nearby critical structures.4 Within the RT workflow, MRI can be used before or during RT delivery. Before 
delivery, MRI scanners within radiology or RT departments (also known as MR simulators) can be used to 

acquire imaging while patients simulate the same position used for treatment to assist in the treatment planning 

process. During RT, MRI systems can be combined with linear accelerators (linacs), known as MR-linacs, the 

technology used to deliver photon-based external beam RT. The technology allows for MR monitoring during 

radiation delivery or MR-guided adaptive RT (MRgART), which facilitates real-time plan adjustments to account 

for anatomic changes that occur during treatment.5
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Recently, there has been a substantial increase in the 

application of deep-learning technologies to medical 

imaging. Specifically, the architecture of convolu-

tional neural networks (CNNs)6 is well suited to image 

pattern recognition. In brief, images are input into 

CNNs, where sequential filters are applied, layer by 
layer, resulting in the downsampling of an image 

into simplified features. These features can be used 
to classify the image7 or synthesize a new image 

through upsampling, which can delineate lesion 

boundaries or serve as an attenuation map for RT—

for example, by using a classic U-Net CNN architec-

ture.8 Generative adversarial networks (GANs) are 

also effective for image synthesis and work by training 
2 neural networks, a generator and a discriminator, 

to compete against one another to generate images 

that appear increasingly more real.9 Generative 

adversarial network variants, such as conditional 

GAN10 and cycleGAN,11 have also been successful 

in medical imaging applications. Conditional GANs 

incorporate labeled training data to produce more 

accurate results, whereas cycleGANs include 2 GANs 

that provide feedback to one another and allow for 

model training of unpaired data. Over the past several 

years, CNNs, GANs, and their variants have been 

demonstrated in a wide array of applications, from 

MRI-based cancer detection to image synthesis.

As MRI continues to play a critical role in the adminis-

tration of RT, deep learning has been applied to each 

step of the external beam RT workflow, illustrated in 
Figure 1. First, after consultation with the radiation 

oncologist, the patient undergoes simulation (in which 

CT and/or MR images are acquired for RT planning), 

contouring (in which the target and organs at risk are 

Figure 1. Schematic of the RT workflow, including simulation, contouring, planning, and delivery.  
Abbreviations: CT, computed tomography; MR-linac, magnetic resonance linear accelerator; MRI, magnetic resonance imaging; OAR, organs at 
risk; RT, radiation therapy.
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identified on the simulation images), planning (in which 
the dose distribution is optimized to achieve optimal 

target coverage and sparing of organs at risk), and 

delivery (in which radiation is delivered). In this review, 

we highlight current deep learning–based applications 
involving MRI used in external beam RT for PCa.

Simulation
The RT workflow begins with patient simulation, 
where CT and/or MR images are acquired while the 

patient is immobilized, using the same setup as for 

treatment. Simulation images are used for 3 main 

purposes: (1) to provide anatomic information the 

physician uses to delineate the tumor and nearby 

organs at risk, (2) to provide a patient-specific map 
of relative electron density used for external beam RT 

dose calculation, and (3) to provide reference images 

for onboard image alignment.

For purposes of dose calculation, CT is an ideal 

imaging modality because it provides a map of photon 

attenuation that can be converted to relative electron 

density. In contrast, MRI provides material magnetic 

properties but no inherent information about mate-

rial photon attenuation or electron density. Therefore, 

traditional external beam RT workflows often use 
both CT (for dose calculation) and MRI (for anatomic 

delineation). Removing the CT scan and implementing 

an MRI-only simulation workflow, however, would 
be advantageous because it reduces the number of 

imaging procedures required for each patient and 

eliminates errors caused by co-registration of CT 

and MR images. To achieve such a workflow, deep 
learning has been used to generate synthetic CT 

images from MR images, as illustrated in Figure 2A.

In this example, T1 Dixon MRI provides fat-only, water-

only, in-phase, and out-of-phase images (approxi-

mately 3-minute acquisition time on a 3-T MR simu-

lator) that are input into a commercially available 

dual-architecture algorithm that first uses a CNN for 
tissue segmentation, followed by a conditional GAN for 

continuous Hounsfield unit CT generation.12 The model 

output is a synthetic CT dataset that can be used for 

dose calculation and treatment planning instead of 

conventional CT. Synthetic CT generation has also 

been achieved using single-sequence MRI input13; 

however, using multiple-input MRI scans provided by 

the Dixon sequences can increase model robustness. 

Overall, these MR-only solutions are in the early stages 

of clinical adoption and have been demonstrated to be 

an effective and safe RT method for PCa.14

Contouring
In addition to providing data dose calculation, simula-

tion images provide anatomic information the physi-

cian can use to identify, or contour, the target and 

nearby organs at risk. Deep learning has been used to 

automate the contouring process. Figure 2B provides 

an example using T2-weighted MRI as input to a 

deep learning–based autosegmentation algorithm for 
automatic generation of prostate, bladder, and rectum 

contours. Autosegmentation algorithms have increas-

ingly been implemented in clinical practice to reduce 

manual labor and decrease interobserver and intraob-

server variability. For example, Cha et al15 reported 

successful implementation of an in-house deep 

learning–based autosegmentation algorithm used in 
MR-based prostate RT planning that improved time 

savings and required infrequent manual editing.

Magnetic resonance imaging is also superior to CT for 

visualizing dominant intraprostatic lesions. Although 

external beam RT has typically been employed through 

a uniform dose to the entire prostate gland, focal 

boosting is a strategy that delivers additional higher 

doses to dominant intraprostatic lesions, which present 

as hypointense lesions on apparent diffusion coefficient 
maps, as shown in Figure 2C. Published in January 

2021, the multi-institutional phase 3 Investigate 

the Benefit of a Focal Lesion Ablative Microboost 
in Prostate Cancer (FLAME) trial (ClinicalTrials.gov 

identifier NCT01168479) reported statistically signifi-

cant (P < .001) improvement in biological disease-free 

survival when adding a focal boost to the macroscopic 

tumor visible on mpMRI (5-year follow-up of 92% in the 

focal boost arm and 85% in the standard arm) without 

affecting toxicity and quality of life for patients with 
intermediate-risk and high-risk PCa.16 Although mpMRI 

is routinely used to detect and stage PCa, delineation 

of dominant intraprostatic lesions is not yet common
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practice, and there have been several reports of 

large intraobserver and interobserver variability when 

performing this task.17,18 To overcome this challenge, 

deep learning–based approaches for tumor classifi-

cation have been implemented for autosegmentation 

of dominant intraprostatic lesions. Bagher-Ebadian et 

al19 achieved high performance in predicting Gleason 

scores of at least 3 + 4 dominant intraprostatic 

lesions by using an adaptive neural network based 

on radiomic features extracted from T2-weighted 

and apparent diffusion coefficient maps. Simeth et 
al20 assessed volumetric dominant intraprostatic 

lesion segmentation accuracy across 5 deep learning 

networks and found that a multiple-resolution residually 

connected network regularized with deep supervision 

implemented in the last convolutional block was the 

most generalizable across different MR scanners.

Planning
After simulation and contouring, RT dose distribu-

tion is optimized during treatment planning to achieve 

prescription target coverage and sparing of nearby 

organs at risk. In the case of prostate external beam 

RT, this optimization is achieved through an objec-

tive function that searches the space of possible linac 

delivery parameters, such as gantry angle, monitor 

units, and multileaf collimator positioning, to calculate 

a fluence map that achieves an optimal dosimetric 
trade-off between target coverage and dose sparing 
of critical structures.21 In conventional workflows, this 
process is executed through manual adjustments to 

the objective function by treatment planners. It is time 

intensive and prone to human errors and can result in 

variable quality across planners.

Figure 2. An example of an MRI simulation protocol that uses deep learning for (A) generating synthetic CT images for MR-only treatment plan-
ning; (B) autocontouring of organs at risk on T2-weighted MRI; and (C) autoclassification of dominant intraprostatic lesions for focal boosting 
using apparent diffusion coefficient maps. 
Abbreviations: ADC, apparent diffusion coefficient; CT, computed tomography; MRI, magnetic resonance imaging.

MRI
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B) Auto-contouring C) Tumor classification
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Automatic, deep learning–based treatment planning 
approaches have been explored to mitigate these 

limitations. For example, CNN models trained on 

input patient geometry and prescription doses have 

predicted dose distributions that are similar to their 

manually planned counterparts, suggesting that deep 

learning can be used to guide treatment planning.22 In 

addition to dose distribution predictions, full automa-

tion of treatment planning has been explored. Shen et 

al23 proposed a hierarchical intelligent automatic treat-

ment planning framework that consists of 3 separate 

networks to emulate the decision-making processes 

of human planners. Hrinivich et al24 developed a rein-

forcement learning approach to rapidly and auto-

matically generate deliverable PCa RT plans using 

multiparameter optimization. Attempts to address 

issues with generalizability across different clinicians 
and institutions have been explored through transfer 
learning, or the process of updating models with new 

or different data,25 although generalizability remains an 

ongoing challenge in all deep learning applications.

Delivery
In the context of MR-guided external beam RT, 

pretreatment imaging may include an MRI-derived 

synthetic CT (Figure 3A) or an MRI (Figure 3B), while 

delivery can be achieved by using a traditional linac 

with onboard cone beam CT (Figure 3C) or, in the 

case of MR-linacs, by using MRI guidance (Figure 3D).

Simulation imaging (Figure 3A and 3B) is compared 

with onboard imaging (Figure 3C and 3D) for daily 

patient alignment and can be automated through 

deep learning–based image registration. A compre-

hensive review of deep learning for medical image 

registration is reported by Fu et al,26 with brief 

descriptions provided here:

• • Synthetic CT to cone beam CT registration. 
Synthetic CT and cone beam CT share similar 

image intensity distributions and are often co-reg-

istered through optimization of intensity-based 

and mutual information–based metrics. To mitigate 
challenges related to noise levels and reduced field 
of view in cone beam CT images, reinforcement 

learning has been applied in which registration 

metrics and strategies are updated during optimi-

zation to improve robustness and accuracy.27 A 

practical consideration for synthetic CTs, however, 

is that implanted fiducial markers do not appear in 
synthetic CT images and must be accounted for if 

used for fiducial-based alignment.28

• • MR simulation to cone beam CT image regis-
tration. Multimodal MRI to cone beam CT image 

registration may be desirable for alignment of MR 

simulation images to linac-based cone beam CT 

for tasks such as improving delineation, planning, 

and dose monitoring of dominant intraprostatic 

lesions based on mpMRI. For example, multimodal 

registration has been performed by CNN-based 

segmentation of MR and cone beam CT images, 

followed by the application of a 3-dimensional 

point cloud matching network,29 which outper-

formed other techniques for non–deep learning–
based MR to cone beam CT image registration.

• • Synthetic CT to MR-linac image registra-
tion. MRI-generated synthetic CT images can 

effectively replace CT images for purposes of 
dose calculation in prostate RT to streamline 

MRgART approaches that currently require CT 

image acquisition. In this workflow, however 
the synthetic CT image is purely used for dose 

calculation because unimodal (MR to MR) image 

registration is generally preferred over multimodal 

(synthetic CT to MR) image registration.

• • MR simulation to MR-linac image registra-
tion. MR to MR image registration may be desir-

able when aligning patients based on anatomy 

best visualized using MRI, such as the dominant 

intraprostatic lesion, or for real-time target tracking 

during delivery. For the former situation, nonrigid 

registration can be achieved by building a statis-

tical deformation model, with principal component 

analysis used to construct a deformation vector 

field.30 Magnetic resonance prostate images were 

found to be accurately co-registered when using 

this technique (dice scores of 0.87 and 0.80 for 

2-dimensional and 3-dimensional images, respec-

tively). For real-time target tracking, deep learning 

models have been developed to achieve fast, 

deformable image registration using 2-dimensional
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(i)
CT-based 

registration

(iv)
MR-based 
registration

MR-Linac (e.g. T1/T2w)

cine-MR images as inputs and motion vector 

fields as outputs.31 This approach outperformed 

conventional registration approaches in the thorax 

and abdomen and could be similarly applied in 

the prostate setting.

A major challenge of MRgART is that it is time inten-

sive, requiring a mean of 45 minutes for delivery vs the 

approximately 10 minutes required for nonadaptive 

approaches on a conventional linac.32 Opportunities to 

increase workflow efficiency include decreasing MRI 
acquisition time and automating the contouring and 

treatment planning required for each delivery.

Image acquisition can be sped up substantially by 

undersampling the MRI and improving the resulting 

image quality using deep learning. For example, Zhu 

et al33 proposed a technique whereby undersampled 

MR data were improved through a data augmentation 

approach using a model pretrained with patient-spe-

cific MRI simulation data. This approach reduced the 
total time for image generation by 66% and improved 

image registration accuracy.

In addition to the deep learning–based autocon-

touring approaches described previously, other strat-

egies take advantage of the large number of MR 

images acquired for each patient on an MR-linac. For 

example, Fransson et al34 developed a patient-specific 
autocontouring network trained on the MR images 

acquired during the first fraction delivery and updated 
with each subsequently acquired MR dataset.

Figure 3. Examples of co-registration between MR simulation data obtained by (A) MR-derived synthetic CT or (B) MRI and onboard imaging 
obtained by (C) linac cone beam CT or (D) MR-linac. Unimodal co-registration can be achieved through CT-based registration (ie, synthetic CT to 
cone beam CT) or MR-based registration (ie, MRI to MR-linac). Multimodal co-registration can be achieved through MR-CT registration. 
Abbreviations: CBCT, cone beam computed tomography; CT, computed tomography; linac, linear accelerator; MR-linac, magnetic resonance 
linear accelerator; MRI, magnetic resonance imaging; sCT, synthetic computed tomography.

MR Simulation On-board Imaging

MRI-derived sCT
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Conclusion
Magnetic resonance imaging is increasingly being used 

in the treatment of PCa with external beam RT. Relative 

to CT, mpMRI provides excellent soft tissue contrast 

and can be used to contour the prostate gland, domi-

nant intraprostatic lesion, and nearby critical struc-

tures for MR-based treatment planning or for MRgART. 

Deep learning architectures, such as CNNs and GANs, 

are well suited for image-based tasks and have been 

applied to image classification and synthesis.
For external beam RT specifically, CNNs and GANs 
have been used to synthesize CT images from MRI 

to facilitate MR-only treatment planning, resulting in 

fewer imaging procedures required of patients and a 

reduction in errors caused by multimodal image regis-

tration. Deep learning–based autocontouring methods 
are increasingly used in the clinic to identify tumors 

and critical structures. Treatment planning automa-

tion has been achieved using deep learning strate-

gies designed to emulate human treatment planners. 

Finally, deep learning has been applied to several 

aspects of the treatment delivery stage, including 

image registration and MRI acceleration. For example, 

deep learning–based automatic image registration has 
been demonstrated for MR to CT–, MR to MR–, and 
synthetic CT to CT–based co-registration, depending 
on the type of imaging used for simulation and treat-

ment. To overcome challenges of long treatment time 

for MRgART, deep learning approaches have been 

used for both autocontouring of daily anatomy and 

reconstruction of undersampled MRI data.

Continued advances in deep learning, such as trans-

former and graph architectures, and generative tech-

niques, such as score matching and diffusion models, 
are expected to continue to improve the efficiency 
and efficacy of prostate RT workflows. Limitations 
of deep learning–based approaches include data 
scarcity, particularly for RT imaging datasets, which 

are often much smaller than radiology datasets. To 

address limitations in dataset sizes while adhering 

to regulations for Health Insurance Portability and 
Accountability Act compliance, security, and patient 

privacy, federated learning has been explored to 

facilitate the sharing of model parameters instead of 

patient data. Federated learning has been success-

fully implemented for multi-institutional MRI-based 

detection of PCa,35 with similar paradigms possible for 

image generation, autocontouring, and autoplanning.
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